

19.5

Single Sign-On (SSO) Solution
Java, .NET, and PHP

Page 1 of 49

Table of Contents

LITHIUMSSO OVERVIEW... 4

LITHIUMSSO AUTHENTICATION PROCESS .. 4

CLIENT INTEGRATION .. 6

ENCRYPTION LIBRARY REQUIREMENTS ... 6

JAVA REQUIREMENTS ... 6

.NET REQUIREMENTS .. 7

PHP REQUIREMENTS ... 7

URLS REQUIRED .. 7

CONFIGURING DOMAINS FOR TESTING .. 7

UNDERSTANDING SESSION IP LOCKING ... 8

DEPLOYING THE LITHIUMSSO CLIENT .. 8

DEPLOYMENT SAMPLE CODE .. 12

SAMPLE 1: LITHIUMSSO CREATES A COOKIE AND WRITES IT TO THE CLIENT BROWSER 12

JAVA CODE ... 12

.NET CODE ... 12

PHP CODE ... 13

SAMPLE 2: PASS THE REQUIRED PARAMETERS AND WRITE THE COOKIE .. 14

JAVA CODE ... 14

NET CODE .. 14

PHP CODE ... 14

SAMPLE 3: PASS OPTIONAL PARAMETERS USING A HASHMAP (JAVA, .NET) OR AN ARRAY (PHP)........ 15

JAVA CODE ... 15

NET CODE .. 15

PHP CODE ... 15

SAMPLE 4: SET THE COOKIE AS NON-SECURE TO SET UP SSO IF REGISTRATION TO YOUR SITE IS UNDER

HTTPS (AN SSL ENVIRONMENT) ... 16

JAVA CODE ... 16

.NET CODE ... 16

PHP CODE ... 16

Page 2 of 49

SAMPLE 5: LITHIUMSSO CREATES THE COOKIE, AND THE CLIENT MANUALLY SETS THE COOKIE 16

JAVA CODE ... 16

.NET CODE ... 17

PHP CODE ... 17

SAME AS SAMPLE 1 – PHP CODE .. 17

SAMPLE 6: INITIALIZE LITHIUMSSOCOOKIE: HEX STRING INSTEAD OF A KEY FILE 17

JAVA CODE ... 17

.NET CODE ... 17

PHP CODE ... 17

SAMPLE 7: INCLUDE THE “REFERER” PARAMETER IN URL ... 18

JAVA CODE ... 18

.NET CODE ... 18

PHP CODE ... 18

SAMPLE 8: SET UP SIGN-OUT WHEN THE USER COMPLETES A SESSION ... 19

JAVA CODE ... 19

.NET CODE ... 19

PHP CODE ... 19

ABOUT LITHIUM FALLBACK COMMUNICATION ... 19

CONFIGURING SSO ... 20

ABOUT BOUNCE SSO ... 21

ABOUT SINGLE LOG OUT ... 21

JAVADOC AND .NET API REFERENCE .. 22

CLASS LITHIUMSSOCLIENT OVERVIEW .. 22

JAVA REFERENCE .. 25

FIELDS ... 25

CONSTRUCTORS .. 25

METHODS ... 27

.NET REFERENCE .. 34

FIELDS ... 34

CONSTRUCTORS .. 34

METHODS ... 36

Page 3 of 49

PHP REFERENCE... 42

CLASS SUMMARY ... 42

CONSTANTS .. 43

VARIABLES .. 43

FUNCTIONS ... 44

LITHIUMSSO FAQ .. 48

Page 4 of 49

LithiumSSO overview

The Lithium Single Sign-on Solution (LithiumSSO) enables any client user system to integrate its

sign-in and registration system with Khoros Community. LithiumSSO creates a seamless sign-in

for the end user and enables you to:

• Create a new user account on Community

• Sign a user into Community

• Change a user’s personal profile parameters

• Change a user’s Community permission levels by assigning or removing a role

Users sign in as usual through the main client site. After signing in, they are forwarded to your

Community site and are automatically signed in or registered on Community.

LithiumSSO works with the client system to authenticate users before signing them into

Community. When an SSO solution is in place, users who sign into the client system can move

freely between the client system and your community without having to sign in again.

LithiumSSO uses encrypted/encoded HTTP cookies to communicate between user systems. The

cookie is encrypted with strong 256-bit Advanced Encryption Standard (AES) cryptography.

Secondary “fallback” methods are available in case the user's browser fails to support persistent

cookies. Although the user experience is seamless, no direct connection is ever established

between the client system and user systems.

• The .Net SSO Client was developed and tested on .Net version 1 and updated for .Net

version 2. Although not tested on .Net Versions 3 or 3.5, it should work on these

versions, too.

• The Java SSO Client is supported up to JDK 1.8+, but versions can be provided as far

back as 1.5.

• The PHP SSO Client has been internally tested up to version 7.2, but should work on the

most current version.

Note: For security reasons, Khoros recommends that you do not modify our SSO client software

to enable unsupported features or versions. If you need to modify our SSO client, we

recommend opening a Support ticket to investigate the possibility.

LithiumSSO authentication process

This section describes what happens behind the scenes with new or existing users signing in to

your system and then automatically into Community.

Page 5 of 49

1. When the user signs in, the client system calls the LithiumSSO library method, which

writes a token based on information in the client system’s user profile. (Khoros provides

a secret key that encrypts the plain text user profile fields and encodes the information

before writing it as a cookie to the user’s browser. This unique, encrypted and encoded

token identifies the user.)

Note: Make sure that the client system does not drop the LithiumSSO cookie until the

user visits the community. Dropping the SSO cookie sooner could create problems if the

user doesn’t visit the community until after the SSO cookie timestamp expires, since the

cookie isn’t processed until the user hits the community.

2. The client system receives the authentication token and writes it to the user’s browser.

The authentication token contains the user’s unique ID, login name, and email address

on the client system. The token can also contain the user’s profile and role information.

3. The client’s system forwards the user to Community.

4. Khoros picks up the user’s authentication token and decrypts and decodes its contents

using a secret key that matches the client’s. It then processes the clear-text contents of

the token, checking to see if the unique user ID passed exists in the system and then

does one of the following:

• If the user exists in Community, it checks for updates to the user’s information, makes any

necessary changes in the user’s Community profile, and signs the user in.

• If the user is new to Community, it creates a new user account based on information

passed in the SSO token and sets the user’s access level based on the user’s permissions

and roles. If no roles are provided, the user receives the default permissions when they

are signed in.

Note: The user is signed in only if the token is valid. If the user is visiting anonymously

on the client system and visits a page that requires sign in, the Community sends the

user back to the client’s registration system with a query string parameter that tells the

client’s registration system where to send the user in Community after the user finishes

signing in.

Page 6 of 49

For example, if an anonymous user tries to post a message, the user is sent to the client’s

registration system with a query string parameter that contains the URL of the post page.

This enables the user to finish posting the message as intended. The name of the query

string parameter – “referer” by default - is configurable.

After the SSO process is complete and the user is signed in, users can change their login, email,

or other profile settings on the client system.

Client integration

To integrate with LithiumSSO, the client system must:

• Be able to create LithiumSSO tokens from its user system

• Have the LithiumSSO libraries installed

• Have a client-specific encryption key installed

Khoros issues the LithiumSSO libraries and a unique encryption key for each deployment.

Note: (.NET only) The LithiumSSO release assembly is signed with a strong name, which

guarantees the uniqueness of a .NET assembly. (Assemblies are the building blocks of

.NET applications.) With strong naming, different versions of an assembly can exist side-

by-side and be loaded into the Global Assembly Cache (GAC). Strong names also ensure

that newer versions of an assembly come from the same publisher. For example,

LithiumSSO can come only from Khoros because we have the private key used to sign

the assembly.

Encryption library requirements

Environment setup is unique to your platform. This section lists the requirements for Java, .NET,

and PHP.

Java requirements

You must download and install the following Java Archive (JAR) files:

• bcprov-jdkxx-xxx.jar and bcmail-jdkxx-xxx.jar files - Cryptography APIs

available from http://www.bouncycastle.org/latest_releases.html. Be sure

to download the correct file for your version of Java.

Page 7 of 49

• servlet-api.jar - available as part of the J2EE SDK from

http://java.sun.com/products/servlet/download.html. Be sure to

download the correct file for your version of Java.

• Guava-jdkxxx-xxx.jar – Google’s guava library: https://code.google.com/p/guava-

libraries. Be sure to download the correct file for your version of Java.

If you are running JDK 1.3 or earlier, you must also download and install the following JAR files:

• jce1_2_1.jar - Java Cryptography Extension (JCE) from Sun

• sunjce_provider.jar - Sun's JCE Provider Implementation

• local_policy.jar/US_export_policy.jar - JAR containing policy files required

by JCE.

Note: These JAR files are included in Sun’s JCE Implementation JAR, which is part of JDK 1.4+. If

you already have JCE installed, no further action is required.

.NET requirements

Your .NET environment must include:

• BouncyCastle.Crypto.dll

• ICSharpCode.SharpZipLib.dll

PHP requirements

Your PHP environment must include:

• zlib.so - compression function extension. Download it here.

URLs required

To direct users to specific registration and sign in pages, you must provide Khoros with the

URLs. Additionally, to send users to a specific page when they sign out of the community,

provide that URL as well.

You can set the sign-in, registration, and sign-out URLs in Community Admin > System > SSO.

Configuring domains for testing

Cookie-based SSO requires that both your company server and the Community server be in the

same domain. This is not an issue in the normal production environment. However, during

testing your Community staging server is located in the lithium.com domain, not in your

domain. As a result, you must choose a name for the Community staging server in your own

https://www.php.net/manual/en/zlib.installation.php

Page 8 of 49

domain and create an alias (CNAME record) on your DNS server that points that local name to

the Community staging server inside the lithium.com domain. You must also provide Khoros

with the name you have selected so that we can configure the appropriate access.

For example, if the Community staging server is:

http://yourcompany.stage.lithium.com

You might choose this as your staging name:

http://yourcompanystage.yourcompany.com

Then you must create a DNS alias that points from your local name:

(http://lithiumstage.yourcompany.com) to the Community staging server

(http://yourcompany.stage.lithium.com).

Note: After you have set up the DNS alias, you must use that alias for SSO to function correctly.

Understanding session IP locking

To prevent malicious third parties from hijacking a user’s SSO session, Community locks the

session ID to the client IP address. If the client IP address does not match the IP address set in

the SSO token, Community prevents the user from signing in.

If your network environment changes the client IP address between the client machine and the

SSO server, SSO might not work. For example, SSO might fail under the following circumstances:

• The SSO server is located behind a proxy server. In this case, the proxy server changes

the client IP address before contacting the SSO server. The SSO server writes the IP

address provided by the proxy server in the session cookie before redirecting the client

to the community. In this case, the client connects to the community using its true IP

address, but has a cookie with a different IP addresses recorded.

• The client IP address changed mid-session. For example, this might happen if there

are network changes for the client’s ISP.

If you have a network environment that might change the client IP address, contact Support

before implementing SSO.

Deploying the LithiumSSO Client

To deploy the LithiumSSO client:

Page 9 of 49

1. Deploy the LithiumSSO library containing the LithiumSSO encryption libraries to the

application server where the user system runs.

2. Place the encryption key on the user system server.

3. Instantiate the SSO client library (examples are from the “Deployment Sample Code”

Sample 1 section below):

• Java: The call to LithiumSSOClient.getInstance in Sample 1 – Java Code

• .NET: The call to SSOClient.init in Sample 1 - .Net Code

• PHP: The call to new lithium_sso in Sample 1 – PHP Code

4. Pass the following parameters to the LithiumSSOClient.

Parameter Description

uniqueID Identifies the user in both your system and Community. Community

uses this ID to identify new and returning users.

Note: The uniqueID is case-sensitive. For example, Community sees

Wassup_Doc and wassup_doc as two different IDs.

Login (display

name)

Sets the name that appears on the messages the user posts in the

community. In effect, this is the user’s community identity. The sign-in

name:

Must be unique in Community.

Cannot exceed 15 alphanumeric characters, (including hyphens and

underscores).

Note: You can ask Professional Services to expand the 15-character

limit. However, longer login names might not display properly in some

areas.

Cannot be an email address or any other personally identifiable

information, such as a social security number.

Note: Display names are not case sensitive.

If the existing user names in your system do not conform to these rules,

you must add a Screen Name selection page to the registration process

that against the same naming rules. Typically, you would include

acceptance of its Terms and Conditions on the same page.

email Sets the email address Community uses to communicate with the user.

See Sample 2 for sample code that passes the required parameters and writes the

cookie.

5. (Optional) Pass the following information via the authentication token:

Page 10 of 49

• User profile information, such as first name, last name, and location. See Sample

3 for sample code that passes optional parameters using a hashmap.

• The user’s role, which specifies the permissions the user has after registering and

logging in to Community. This enables your system to control access to specific

forums or features.

In the SSO token, you can include any profile field. The most commonly used profile

fields include:

Field Description

profile.biography The user’s profile biography

profile.birthday The user’s birthday in UTC epoch time

profile.im_id_aim The user’s AIM ID

profile.im_id_icq The user’s ICQ ID

profile.im_id_msn The user’s MSN ID

profile.language The default community site language to use for this

user.

profile.location The user’s location

profile.name_first The user’s first name

profile.name_last The user’s last name

profile.remember_password Indicates whether the community should set an auto-

login cookie to remember users when they return to

the community after the session has expired

profile.signature The user’s message signature

profile.url_homepage The user’s homepage URL

profile.url_icon The URL for the user’s avatar

profile.url_icon_h Height in pixels for the user’s avatar

profile.url_icon_w Width in pixels for the user’s avatar

roles.grant

roles.remove

Comma-delimited list of the roles to grant or

remove for a user

Note: To prevent confusion and having roles reset

each time the user authenticates via SSO, we

recommend you manage each role using either SSO

or Admin, but not both.

For example, you might choose to manage roles with

smaller groups of users (Administrator, Moderator,

and Superuser) via Community Admin and manage

Page 11 of 49

roles for larger populations (Employee, Partner, and

Customer) via SSO, which is much more manageable.

So, if you’re passing an Employee role via SSO, don't

remove it via the Admin; instead, stop passing it in

roles.grant and start passing it roles.remove. If you

also remove it via the Admin, and the IDP is still

passing the role in roles.grant, they'll be granted the

role each time they sign in.

Based on the required and optional information, the LithiumSSOClient can:

• Return the value of the encryption string to be used in the cookie or as a parameter in the

fallback HTTP GET or POST request. See About Lithium fallback communication for more

information.

• Return a cookie “object” that you can use to write the cookie to the browser/user-agent.

• Write the cookie directly to the browser/user-agent if the request includes the

HttpServletResponse object. (Java only)

After the SSO token is created and written, your system can redirect users to any page on

Community. This redirection need not be forced; users can make their way to Community on

their own at any time after logging in to your system. We recommend redirecting users to the

URL provided as a query string parameter when the user is sent to the client system.

For example, if an anonymous user tries to post a message, the user is sent to the client’s

registration system with a query string parameter that contains the URL of the post page. This

enables the user to finish posting the message. The name of the query string parameter—

“referer” by default—is configurable. See Sample 7 for sample code that shows how to get the

“referer” parameter in the URL.

To sign a user out using an SSO token, write the SSO token using a unique login ID that

represents an anonymous user, as shown in Sample 8.

Page 12 of 49

Deployment sample code

The following sections provide sample deployment code for Java, .NET, and PHP.

Note: When choosing which fields to include in the SSO token, be mindful of how long

the SSO cookie will get. The standard maximum allowed size for all cookies for a domain

is 4093 bytes. (This is the limit set by most modern browsers.) Some fields, such as the

referrer URL shown in Sample 7, can be quite long. As such, you might need to make

some adjustments to accommodate for all the information you want to include in the

SSO cookie.

Sample 1: LithiumSSO creates a cookie and writes it to the client browser

Java code
String keyPath = "C:\\usr\\local\\www\\web-

inf\\lithium\\companyx.key";

LithiumSSOClient ssoClient = LithiumSSOClient.getInstance(keyPath,

"companyx", ".companyx.com", "serverid");

// get Lithium cookie value from client values:

// uniqueId, login, email, settingString, request, response

String settingString =

"profile.name_first=Lia|profile.name_last=Thium";

ssoClient.writeLithiumCookie(uniqueId, login, email, settingString,

request, response);

.NET code
// init SSOClient class (to be called during server init, 1 time only)

String keyPath = "C:\\usr\\local\\www\\web-

inf\\lithium\\companyx.key";

SSOClient.init(keyPath, "companyx", ".companyx.com");

// get Lithium cookie value from client values:

// uniqueId, login, email, settingString, request, response

String settingString =

"profile.name_first=Lia|profile.name_last=Thium";

SSOClient.writeLithiumCookie(uniqueId, login, email, settingString,

request, response);

Page 13 of 49

PHP code
// Hexidecimal string provided by Khoros (encryption key)

$key = "9D1DD509A2E1529E73DC3026D455D391";

// Initialize the Khoros php library

require_once("lithium_sso.php");

$lithiumSSOClient = new lithium_sso("companyx", ".companyx.com",

$key);

// Setup parameters

$uniqueId = "231412341"; // unique identifier for this user

$login = "testuser234"; // login name for this user

$email = "testuser234@companyx.com"; // email address for this user

// (Optional) Additional user profile settings to pass to Lithium

$settings = array();

// Example: Set the user's homepage URL

$settings["profile.url_homepage"] = "http://www.customerhomepage.com";

// Example: Grant the user the Administrator role

$settings["roles.grant"] = "Moderator";

// Generate the actual token

$ssoValue = $lithiumSSOClient->get_auth_token($uniqueId, $login,

$email, $settings);

PHP5:

setrawcookie($lithiumSSOClient->lithium_cookie_name . clientid,

$ssoValue, 0, '/', clientdomain);

PHP4:

header("Set-Cookie: ".$lithiumSSOClient-

>lithium_cookie_name.clientid,"=".$ssoValue.";Domain=".clientdomain.";

Path=/");

Page 14 of 49

Sample 2: Pass the required parameters and write the cookie

Java code
// unique id

String uniqueId = "167865";

// display name

String login = "janmon04";

// email

String email = "jane.monet@mycompany.com";

//write cookie

lithiumSSOClient.writeLithiumCookie(uniqueId, login, email,

settingsMap, request, response);

NET code
// unique id

String uniqueId = "167865";

// display name

String login = "janmon04";

// email

String email = "jane.monet@mycompany.com";

//write cookie

SSOClient.writeLithiumCookie(uniqueId, login, email, settingsMap, request,

response);

PHP code
// unique id

$uniqueId = "167865";

// display name

$login = "janmon04";

// email

$email = "jane.monet@mycompany.com";

//write cookie

$ssoValue = $lithiumSSOClient->get_auth_token($uniqueId, $login, $email,

$settings_array);

header("Content-Type: text/html; charset=utf-8");

header("Set-Cookie: ".$lithiumSSOClient-

>lithium_cookie_name.$clientId."=".$ssoValue."; Path=/;Domain=".$domain);

Page 15 of 49

Sample 3: Pass optional parameters using a hashmap (Java, .NET) or an array

(PHP)

Java code
Map<String, String> settingsMap = new HashMap<String, String>();

settingsMap.put("profile.name_first", "Jane");

settingsMap.put("profile.name_last", "Monet");

settingsMap.put("profile.im_id_aim", "janem04");

//write cookie

lithiumSSOClient.writeLithiumCookie(uniqueId, login, email,

settingsMap, request, response);

//write cookie

lithiumSSOClient.writeLithiumCookie(uniqueId, login, email,

settingsMap, request, response);

NET code
Hashtable settingsMap = new Hashtable();

settingsMap.Add("profile.name_first", "Jane");

settingsMap.Add("profile.name_last", "Monet");

settingsMap.Add("profile.im_id_aim", "janem04");

//write cookie

SSOClient.writeLithiumCookie(uniqueId, login, email, settingsMap, request,

response);

PHP code
$settings_array = new array();

$settings_array["profile.name_first"] = "Jane";

$settings_array["profile.name_last"] = "Monet";

$settings_array["profile.im_id_aim"] = "janem04";

//write cookie

$ssoValue = $lithiumSSOClient->get_auth_token($uniqueId, $login, $email,

$settings_array);

header("Content-Type: text/html; charset=utf-8");

header("Set-Cookie: ".$lithiumSSOClient-

>lithium_cookie_name.$clientId."=".$ssoValue."; Path=/;Domain=".$domain);

Page 16 of 49

Sample 4: Set the cookie as non-secure to set up SSO if registration to your site is

under HTTPS (an SSL environment)

Note: In the following examples, if the community URL you are sending the request to after

setting the SSO cookie to is HTTPS, then set "Secure: True", but if it is not HTTPS, set it to

"Secure: False".

Java code
Cookie ssoCookie = getLithiumCookie(uniqueId, login, email, settings,

request);

ssoCookie.setSecure(false);

response.addCookie(ssoCookie);

.NET code
HttpCookie cookie = SSOClient.getLithiumCookie(uniqueId, login, email,

request, settings);

ssoCookie.set_Secure(false);

response.AppendCookie(ssoCookie);

PHP code
//simply don't set the Secure header parameter

$ssoValue = $lithiumSSOClient->get_auth_token($uniqueId, $login, $email,

$settings_array);

header("Content-Type: text/html; charset=utf-8");

header("Set-Cookie: ".$lithiumSSOClient-

>lithium_cookie_name.$clientId."=".$ssoValue."; Path=/;Domain=".$domain);

Sample 5: LithiumSSO creates the cookie, and the client manually sets the cookie

Java code
String keyPath = "D:\\usr\\local\\www\\web-

inf\\lithium\\companyx.key";

LithiumSSOClient ssoClient =

LithiumSSOClient.getInstance(keyPath,"companyx", ".companyx.com",

"serverid");

// get Lithium cookie value from client values:

// uniqueId, login, email, settingString, request

String settingString =

"profile.name_first=Lia|profile.name_last=Thium";

Page 17 of 49

Cookie ssoCookie =

ssoClient.getLithiumCookie(ssoClient.getLithiumCookieValue(uniqueId,

login, email, settingString, request));

response.addCookie(cookie);

.NET code
// init SSOClient class (to be called during server init, 1 time only)

String keyPath = "D:\\usr\\local\\www\\web-inf\\lithium\\companyx.key";

SSOClient.init(keyPath, "companyx", ".companyx.com");

// get Lithium cookie value from client values:

// uniqueId, login, email, settingString, request

String settingString = "profile.name_first=Lia|profile.name_last=Thium";

String lithiumSSOvalue = SSOClient.getLithiumCookieValue(uniqueId, login,

email, settingString, request);

HttpCookie cookie = new HttpCookie("lithiumSSO:companyx", lithiumSSOvalue);

cookie.Path = "/";

cookie.Domain = ".companyx.com";

response.AppendCookie(cookie);

PHP code

Same as Sample 1 – PHP Code

Sample 6: Initialize LithiumSSOCookie: Hex String instead of a key file

Java code
String keyString = "04A7D2234230C506047F3BAF67B5DAC2";

Key ssoKey = new Key(keyString);

LithiumSSOClient.getInstance(ssoKey.getRaw(), "companyx",

".companyx.com", "serverid")

.NET code
byte[] ssoKeyData = KeyManager.convertHexString(ssoKey);

SSOClient.init(ssoKeyData, "companyx", ".companyx.com", “serverid”);

PHP code

Same as Sample 1 – PHP Code

Page 18 of 49

Sample 7: Include the “referer” parameter in URL

Java code
public void doGet(HttpServletRequest request, HttpServletResponse

response) throws ServletException, IOException {

 String refererUrl = request.getParameter("referer");

 // do something, such as logging the user in or out using the

LithiumSSOClient

 // ...

 // send the user back to the page of the forums they came from

 response.sendRedirect(refererUrl);

}

.NET code
private void Page_Load(object sender, System.EventArgs e)

{

 String refererUrl = Request.QueryString["referer"];

 // do something, such as logging the user in or out using the

LithiumSSOClient

 // ...

 // send the user back to the page of the forums they came from

 response.Redirect(refererUrl);

}

PHP code
<?php

if ($_POST != null) {

 $refererUrl = $_POST['referer'];

 // do something, such as logging the user in or out using the

LithiumSSOClient

 // ...

 // send the user back to the page of the forums they came from

 header("Location: ".$refererUrl);

}

?>

Page 19 of 49

Sample 8: Set up sign-out when the user completes a session

Java code
String uniqueId = LithiumSSOClient.ANONYMOUS_UNIQUE_ID;

ssoClient.writeLithiumCookie(uniqueId, login, email, settingString,

request, response);

See Javadoc reference for information on syntax.

.NET code
String uniqueId = SSOClient.ANONYMOUS_UNIQUE_ID;

SSOClient.writeLithiumCookie(uniqueId, login, email, request, response);

PHP code

$uniqueId = $lithiumSSOClient->ANONYMOUS_UNIQUE_ID;

$ssoValue = $lithiumSSOClient->get_auth_token($uniqueId, $login, $email,

$settings);

PHP5:

setrawcookie($lithiumSSOClient->lithium_cookie_name . clientid, $ssoValue, 0,

'/', clientdomain);

PHP4:

header("Set-Cookie: ".$lithiumSSOClient-

>lithium_cookie_name.clientid,"=".$ssoValue.";Domain=".clientdomain.";

Path=/");

About Lithium fallback communication

The LithiumSSO system supports a fallback method for communicating between the client

system and Community. In addition to the SSO cookie, you can pass the encrypted value

generated by the LithiumSSOClient class to Community through either an HTTP GET or POST

request.

You make the GET or POST request to the SSO sign-in page URL. For example:

http://myforum.mydomain.com/mycommunity/sso

Page 20 of 49

Include the following parameters in your GET or POST request:

Parameter Name Sample Value

sso_value ~30asldivjha3093wjhafkefjaow3r934uefjo349aur9w03jhoas0aw349aj0f9

referer http://forums.mydomain.com

You can change the name of the referer parameter as part of the configuration for your

community. If you do not specify a referer URL, the user is taken to the community front page.

Configuring SSO

To configure SSO settings for your community:

1. Go to Community Admin > System > SSO

2. Configure the SSO settings:

Setting Description

Turn on Lithium Single

Sign-On (SSO)

Enable or disable LithiumSSO.

Bounce URL (Optional) URL to bounce the first request of a session to. Used

to determine the login state. Used in bounce SSO

scenarios only. Leave blank to disable bounce.

Allow SSO user Email

changes

Enable SSO users to change the email associated with

their account.

Language Parameter

Name

Name of the query string parameter to pass to the

host system.

Return Value Parameter

Name

Name of the query string parameter to pass to the

host system.

Redirect Reason

Parameter Name

Name of the query string parameter to pass to the

host system.

URL to registration page Direct users to this URL when they register.

URL to login page Direct users to this URL at sign-in.

URL to logoff page Direct users to this URL at sign-out.

Single Log Out (optional) Enable logging users out of the community from the

client’s system.

Enable Auto Login for

Fallback SSO

Enables auto login via fallback SSO if cookie-based

login fails.

Page 21 of 49

Auto generate SSO User

Login

When login is enabled in SSO Complete Registration

form and this field is checked, the XML Text

Generator for SSO User login (which must also be

checked) generates a user login and populates the

login field in the SSO Complete Registration form.

Users can still change the pre-populated values. If

login is disabled in the SSO Complete Registration

form, this field has no effect.

XML text generator for

SSO user login

When login is enabled in SSO Complete Registration

form and the Auto generate SSO User Login field is

checked, the XML Text Generator for SSO User login

generates a user login and populates the login field

in the SSO Complete Registration form when this

field is checked. Users can still change the pre-

populated values. If login is disabled in the SSO

Complete Registration form, this field has no effect.

3. Click Save.

About Bounce SSO

Bounce SSO ensures that a user’s community session is synced with the user’s session on the

client system. When user Community sessions times out, Bounce SSO redirects them to a client-

specified URL which the client can set up to redirect users back to the originating community

pages with the SSO token to sign them back in.

Bounce syncs your company website with Community. When enabled, users who are already

signed in on the customer side can be seamlessly signed into Community when they get to the

community via a link or bookmark.

Bounce hits the configured bounce URL once per session on the user’s first visit to the

community, if the user is not signed in. To support this, you need to implement a new page that

checks to see if the user is signed in (no UI is required). If they are signed in, set an SSO cookie.

Then, in either case, redirect back to the referrer.

About Single log out

You use Single Log Out when Single Sign-On is enabled and a user signs out on your company

website. You can set an SSO cookie with the Community anonymous user ID (refer to Sample 8).

This ensures that the user is not signed in when they visit the community.

Page 22 of 49

Javadoc and .NET API reference

This section provides the summary and detailed code information for Java and .NET.

Class LithiumSSOClient overview

lithium.user.sso.LithiumSSOClient

public class LithiumSSOClient

extends java.lang.object (Java only)

Class used to generate encrypted cookies, used for creating authentication tokens used by the

LithiumSSO system. The cookies are encrypted using a private key, which is provided by Lithium.

The default name of the key is cookie.prod.key and it resides in the current directory. You

can change the file path to the key by specifying the keyPath during the call to

getInstance() (Java) or init() (.NET).

If you are using the SMR system, your private.key must reside in the same location as

cookie.prod.key.

If possible, call getInstance() (Java) or init() (.NET) during server initialization to minimize

the response time for the first user. Initialization times may vary depending on key size and

server CPU speeds. If the client is using the SMR functionality, you must call

initSMR(String) prior to the initial getInstance() (Java) or init() (.NET) method to

initialize the private.key file.

You can pass the authentication token to the client in three ways:

• Call writeLithiumCookie(), which creates a Cookie object and writes it directly to

the client via the response object.

• Call getLithiumCookie(), which returns a Cookie object, and then write it to the

client manually.

• Call getLithiumCookieValue(), which returns an encrypted string that can be used

to create the lithiumSSO token.

Note: Cookie name must be lithiumSSO:<clientID> where clientID is the unique ID

assigned to you by Khoros. You pass this value in the call you make to first instantiate the

LithiumSSO client.

To process a user account the LithiumSSO system requires at least 3 parameters:

Page 23 of 49

• uniqueId - A unique identifier which is used to represent the user. (String)

uniqueId is the same as the SSO ID and contain up to 120 single-byte characters. The

only length restrictions are the size of the database columns for these fields in the users

table. uniqueId cannot be null or empty string ("") or contain delimiter token (|).

• login - User's display name for Community. (String)

This name appears on all messages the user posts. It can contain up to 255 single-byte

characters, cannot be null or empty string (""), and cannot contain delimiter token (|).

• email - User's email address for Community. (String)

It can contain up to 255 single-byte characters and be null, but if email is specified, then

it cannot contain delimiter token (|)

Note: Many customers opt to have the community capture login and/or email when the user

first authenticates to the community via SSO. If the community is configured this way, the login

and/or email passed in the SSO token doesn't matter, since this information is captured by

Community during the registration flow.

You can also provide an optional hash of user settings.

The unique identifier must be the same as the one used on the client system, unless the client

system uses personally identifiable information, such as a social security number. This ID is

usually in the form of a unique integer, but can be any arbitrary string (for example, a user name

can be used if it is unique on the system).

For security purposes, three additional parameters are required:

• reqUserAgent - [HttpServletRequest.getHeader ("User-Agent")] used for

security identification information

• reqReferer - [HttpServletRequest.getHeader ("Referer")] used for security

identification information

• reqRemoteAddr - [HttpServletRequest.getRemoteAddr()] used for security

identification information

You can pass the optional settings (Map) object in the token with additional fields to be

synchronized with the Community servers. You can use the settings hash to pass profile

information about the user or to set up the user's permissions on Community. Permissions are

determined with the roles.grant setting entry. Roles are used on Community to grant or

deny permissions, and are created and managed by the client. If no Role is specified in the

Page 24 of 49

settings hash, the system assigns the default role associated with a new system user. (Example:

roles.grant = "Moderator")

Valid settings include:

• roles.grant: A comma-delimited list of Roles to grant this user

• profile.name_first: The user's first name

• profile.name_last: The user's last name

• profile.location: The user's geographic location

Page 25 of 49

Java reference

Fields

This section contains the summary and detailed information for fields.

Field

ANONYMOUS_UNIQUE_ID

public static final java.lang.String ANONYMOUS_UNIQUE_ID

COOKIE_NAME

public static final java.lang.String COOKIE_NAME

COOKIE_NAME_PREFIX

static java.lang.String

SEP_TOKEN

public static final char SEP_TOKEN

VERSION

public static final java.lang.String VERSION

Constructors

This section contains the summary and detailed information for constructors.

Constructor

getInstance (keyPath, clientId, clientDomain, serverId)

Initializes the SSOClient with an encryption key, client id, the client's domain, and a

server id. A path to the key file is passed in and used to find the key file and load the

key. The form of the domain name is set by RFC 2109. Support provides the key and

client id when the encryption key request is made. This method must be called first,

prior to initial calls to either getLithiumCookie() or writeLithiumCookie()

are made. Calling this method during server initialization is highly recommended to

minimize response times for the first user.

The initialization optionally takes the serverId parameter. When the SSO API issues

cookies, it also issues a one-time-use ID to prevent cookies from being reused. This ID

is specific to the instance of the SSO API. Whether or not the newServerId

parameter is passed, a random string will be used in the creation of the server ID to

ensure that each instance of the SSO Client has a unique server ID.

This method can also be called at any time to reload the key, usually after a new key is

generated.

Parameters:

keyPath the byte array that contains the encryption key.

Page 26 of 49

clientId a unique identifier assigned to the client.

clientDomain the client's domain.

serverId the ID of the client's server. If Null or an empty String is passed in for

serverId, it will default to the ip address of the client.

Returns:

an initialized LithiumSSOClient object.

Throws:

SSOException - if initial settings are invalid.

public static synchronized LithiumSSOClient getInstance

(java.lang.string keyPath,

java.lang.String cliendId,

java.lang.String clientDomain,

java.lang.String serverId) throws SSOException

getInstance (keyData, clientId, clientDomain, serverId)

Initializes the SSOClient with an encryption key, client id, the client's domain, and a

server id. Key is passed in as a byte array. Clients can use the Key class to generate the

byte array from a hex String. The form of the domain name is set by RFC 2109. Both

the key and client id are provided by Khoros. This method must be called first, prior to

initial calls to either getLithiumCookie() or writeLithiumCookie() are made.

Calling this method during server initialization is highly recommended to minimize

response times for the first user.

The initialization optionally takes the serverId parameter. When the SSO API issues

cookies, it also issues a one-time-use ID to prevent cookies from being reused. This ID

is specific to the instance of the SSO API. Whether or not the newServerId

parameter is passed, a random string will be used in the creation of the server ID to

ensure that each instance of the SSO Client has a unique server ID.

This method can also be called at any time to reload the key, usually after a new key is

generated.

Parameters:

keyData the byte array that contains the encryption key.

clientId a unique identifier assigned to the client.

clientDomain the client's domain.

serverId the ID of the client's server. If Null or an empty String is passed in for

serverId, it will default to the IP address of the client.

Returns:

an initialized LithiumSSOClient object

public static synchronized LithiumSSOClient getInstance

Page 27 of 49

(byte[] keydata,

java.lang.String cliendId,

java.lang.String clientDomain,

java.lang.String serverId) throws SSOException

Methods

This section contains the summary and detailed information for methods.

Method detail

getKeyPath ()

Returns the path to the LithiumSSO encryption key.

public java.lang.String getKeyPath()

getServerId ()

Returns the Server ID.

public java.lang.String getServerId()

getClientDomain ()

Returns the Client Domain used to set the Cookie domain.

public java.lang.String getClientDomain()

getLithiumCookieName ()

Returns the name that is used for cookies containing an SSO token.

public java.lang.String getLithiumCookieName()

getClientId ()

Returns the Client ID.

public java.lang.String getClientId()

Page 28 of 49

getLithiumCookieValue (uniqueId, login, email, settingString, reqUserAgent,

reqReferer, reqRemoteAddr)

Returns an encrypted String to be used for an authentication token.

The getInstance() method must be called before this method is accessed.

Parameters:

• uniqueId - unique identified used on the client User system

• login - User's login display name to be used on Community. The following

characters are NOT allowed: < > () [] \ / ' "

• email - User's email address to be used on Community

• settingString - name/value pairs for user profile fields. (optional)

• reqUserAgent - [HttpServletRequest.getHeader(“User-Agent”)] used

for security identification information

• reqReferer - [HttpServletRequest.getHeader(“Referer”)] used for

security identification information

• reqRemoteAddr - [HttpServletRequest.getRemoteAddr()] used for

security identification information

Throws: SSOException if initial settings are invalid.

public java.lang.String getLithiumCookieValue

(java.lang.String uniqueId,

java.lang.String login,

java.lang.String email,

java.lang.String settingString,

java.lang.String reqUserAgent,

java.lang.String reqReferer,

java.lang.String reqRemoteAddr)

throws SSOException

See also: getInstance(String keyPath, String clientId, String
clientDomain, String serverId)

getLithiumCookieValue (uniqueId, login, email, settingString, request)

Returns an encrypted String to be used for an authentication token.

The getInstance() method must be called before this method is accessed.

Page 29 of 49

Parameters:

• uniqueId - unique identified used on the client User system

• login - User's login display name to be used on Community. The following

characters are NOT allowed: < > () [] \ / ' "

• email - User's email address to be used on Community

• settingString - name/value pairs for user profile fields. (optional)

• request - HttpServletRequest used for security identification information

Throws:

SSOException if initial settings are invalid.

public static java.lang.String getLithiumCookieValue

(java.lang.String uniqueId,

java.lang.String login,

java.lang.String email,

java.lang.String settingString,

javax.servlet.http.HttpServletRequest request)

throws SSOException

See Also: getInstance(String keyPath, String clientId, String

clientDomain, String serverId

getLithiumCookieValue (uniqueId, login, email, settings, request)

Returns an encrypted String to be used for an authentication token.

The getInstance() method must be called before this method is accessed.

Parameters:

• uniqueId - unique identified used on the client User system

• login - User's login display name to be used on Community. The following

characters are NOT allowed: < > () [] \ / ' "

• email - User's email address to be used on Community

• settings - name/value pairs for user profile fields. (optional)

Page 30 of 49

• request - HttpServletRequest used for security identification information

Throws: SSOException - if initial settings are invalid.

public java.lang.String getLithiumCookieValue

(java.lang.String

uniqueId,

java.lang.String login,

java.lang.String email,

java.util.Map<java.lang.String,java.lang.String> settings,

javax.servlet.http.HttpServletRequest request)

throws SSOException

See Also: getInstance(String keyPath, String clientId, String

clientDomain, String serverId)

getLithiumCookie (lithiumSSOValue)

Helper method returns an HttpCookie containing an encrypted authentication token

that can be passed to the client (usually via HttpResponse) for seamless login and

registration on the Community servers. The getInstance() method must be called

before this method is accessed.

Parameters:

lithiumSSOValue - Result of calling getLithiumCookieValue() [lithium SSO token]

Throws: SSOException if initial settings are invalid.

public Cookie getLithiumCookie(java.lang.String lithiumSSOValue)

throws SSOException

See Also: getInstance(String KeyPath, String ClientId, String

ClientDomain)

getLithiumCookie (uniqueId, login, email, settings, request)

Returns an HttpCookie containing an encrypted authentication token that can be

passed to the client (usually via HttpResponse) for seamless login and registration on

the Community servers. The getInstance() method must be called before this

method is accessed.

Page 31 of 49

Parameters:

• uniqueId - unique identified used on the client User system

• login - User's login display name to be used on the Community. The following

characters are NOT allowed: < > () [] \ / ' "

• email - User's email address to be used on the Community

• settings - name/value pairs for user profile fields. (optional)

• request - HttpServletRequest used for security identification information

Throws: SSOException if initial settings are invalid.

public Cookie getLithiumCookie

(java.lang.String uniqueId,

java.lang.String login,

java.lang.String email,

java.util.Map<java.lang.String,java.lang.String>

settings,

HttpServletRequest request)

throws SSOException

See Also: getInstance(String keyPath, String clientId, String

clientDomain, String serverId)

writeLithiumCookie (lithiumSSOValue, response)

Helper method writes an encrypted authentication token cookie directly to the client via

the HttpResponse object for seamless login and registration on the Community

servers. The getInstance()method must be called before this method is accessed

Parameters:

• lithiumSSOValue - Result of calling getLithiumCookieValue() [lithium SSO

token]

• response - HttpServletResponse to set the cookie with

Returns: true if the token was written successfully.

Page 32 of 49

Throws: SSOException if initial settings are invalid.

public boolean writeLithiumCookie(java.lang.String

lithiumSSOValue,

HttpServletResponse response)

throws SSOException

See Also: getInstance(String keyPath, String clientId, String

clientDomain, String serverId)

writeLithiumCookie (uniqueId, login, email, settings, request, response)

Writes an encrypted authentication token cookie directly to the client via the

HttpResponse object for seamless login and registration on the Community servers.

The getInstance() method must be called before this method is accessed.

Parameters:

• uniqueId - unique identified used on the client User system

• login - User's login display name to be used on Community. The following

characters are NOT allowed: < > () [] \ / ' "

• email - User's email address to be used on Community

• settings - name/value pairs for user profile fields. (optional)

• request - HttpServletRequest used for security identification information

• response - HttpServletResponse to set the cookie with

Returns: true if the token was written successfully

Throws: SSOException if initial settings are invalid.

public boolean writeLithiumCookie

(java.lang.String uniqueId,

java.lang.String login,

java.lang.String email,

java.util.Map<java.lang.String,java.lang.String>

settings,

HttpServletRequest request,

Page 33 of 49

HttpServletResponse response)

throws SSOException

See Also: getInstance(String keyPath, String clientId, String

clientDomain, String serverId)

removeLithiumCookie (request, response)

Removes the LithiumSSO cookie from the user's cookie cache. Call this method when a

user signs out from the client system.

Parameters:

• request - HttpServletRequest used for security identification information

• response - HttpServletResponse to remove the cookie with

public void removeLithiumCookie(HttpServletRequest request,

HttpServletResponse response)

initSMR (smrKeyPath)

Initializes the SMR private key.

Note: PrivacyGuard is a separate Khoros product that enables Community to send

email messages to community members without actually knowing what the user’s email

address is. Contact your Customer Success Manager (CSM) for more information about

PrivacyGuard.

Parameters:

smrKeyPath - SMR private key path.

Throws: SSOException

public void initSMR(java.lang.String smrKeyPath)

throws SSOException

getSMRField (param)

Returns passed parameter encrypted via the SMR private key.

Note: PrivacyGuard is a separate Khoros product that enables Community to send

email messages to community members without actually knowing what the user’s email

Page 34 of 49

address is. Contact your Customer Success Manager (CSM) for more information about

PrivacyGuard.

Parameters:

param - field to encrypt.

Throws: SSOException - if SMR initialization has failed.

public java.lang.String getSMRField(java.lang.String param)

throws SSOException

.NET reference

Fields

This section contains the summary and detailed information for fields.

Field

ANONYMOUS_UNIQUE_ID

Public static read-only String ANONYMOUS_UNIQUE_ID

COOKIE_NAME

public static read-only System.String COOKIE_NAME

SEP_TOKEN

public static read-only char SEP_TOKEN

VERSION

public static read-only System.String VERSION

Constructors

This section contains the summary and detailed information for constructors.

Constructor

init (newKeyPath, newClientId, newClientDomain, newServerId)

Initializes the SSOClient with an encryption key, client id, the client's domain, and a

server id. A path to the key file is passed in and used to find the key file and load the

key. The form of the domain name is set by RFC 2109. Both the key and client id are

provided by Khoros. This method must be called first, prior to initial calls to either

getLithiumCookie() or writeLithiumCookie() are made. Calling this method

during server initialization is highly recommended to minimize response times for the

first user.

Page 35 of 49

The initialization optionally takes the newServerId parameter. When the SSO API

issues cookies, it also issues a one-time-use ID to prevent cookies from being reused.

This server ID is used in the creation of those one-time-use IDs. Whether or not the

newServerId parameter is passed, a cryptographically-random string will be used in

the creation of the server ID to ensure that the SSO Client has a unique server ID.

This method can also be called at any time to reload the key. Only call this method

once, after a new key is generated.

Parameters:

newKeyPath the path to the file that contains the encryption key.

newClientId a unique identifier assigned to the client.

newClientDomain the client's domain.

newServerId the ID of the client's server. If Null or an empty String is passed in for

serverId, it will default to the ip address of the client.

public static void init(

 System.String newKeyPath,

 System.String newCliendId,

 System.String newClientDomain,

 System.String newServerId) throws SSOException

Init (newKeyPath, newClientId, newClientDomain)

Initializes the SSOClient with an encryption key, client id, and the client's domain. A

path to the key file is passed in and used to find the key file and load the key. The

form of the domain name is set by RFC 2109. Both the key and client id are provided

by Khoros. This method must be called first, prior to initial calls to either

getLithiumCookie() or writeLithiumCookie() are made. Calling this method

during server initialization is highly recommended to minimize response times for the

first user.

When the SSO API issues cookies, it also issues a one-time-use ID to prevent cookies

from being reused. A server ID is used in the creation of those one-time-use IDs.

When this method is called, a cryptographically-random string will be generated to

create a unique server ID.

This method can also be called at any time to reload the key, Only call this method

once, after a new key is generated.

Parameters:

newKeyPath the path to the file that contains the encryption key.

newClientId a unique identifier assigned to the client.

Page 36 of 49

newClientDomain the client's domain.

public static void init(

 System.String newKeyPath,

 System.String newCliendId,

 System.String newClientDomain) throws SSOException

Init (newKeyData, newClientId, newClientDomain, newServerId)

Initializes the SSOClient with an encryption key, client id, the client's domain, and a

server id. A path to the key file is passed in and used to find the key file and load the

key. The form of the domain name is set by RFC 2109. Both the key and client id are

provided by Khoros. This method must be called first, prior to initial calls to either

getLithiumCookie() or writeLithiumCookie() are made. Calling this method

during server initialization is highly recommended to minimize response times for the

first user.

The initialization optionally takes the newServerId parameter. When the SSO API

issues cookies, it also issues a one-time-use ID to prevent cookies from being reused.

This server ID is used in the creation of those one-time-use IDs. Whether or not the

newServerId parameter is passed, a cryptographically-random string will be used in

the creation of the server ID to ensure that the SSO Client has a unique server ID.

This method can also be called at any time to reload the key. Only call this method

once, after a new key is generated.

Parameters:

newKeyData the byte array that contains the encryption key.

newClientId a unique identifier assigned to the client.

newClientDomain the client's domain.

newServerId the ID of the client's server. If Null or an empty String is passed in for

serverId, it will default to the IP address of the client.

public static void init(

 byte[] newKeyData,

 System.String newCliendId,

 System.String newClientDomain,

 System.String newServerId) throws SSOException

Methods

This section contains the summary and detailed information for methods.

Page 37 of 49

Method detail

getKeyPath ()

Returns the path to the LithiumSSO encryption key.

public System.String getKeyPath()

getServerId ()

Returns the Server ID.

public System.String getServerId()

getClientDomain ()

Returns the Client Domain used to set the Cookie domain.

public System.String getClientDomain()

getClientId ()

Returns the Client ID.

public System.String getClientId()

Page 38 of 49

getLithiumCookieValue (uniqueId, login, email, settingString, reqUserAgent,

reqReferer, reqRemoteAddr)

Returns an encrypted String to be used for an authentication token.

The init() method must be called before this method is accessed.

Parameters:

• uniqueId - unique identified used on the client User system

• login - User's login display name to be used on Community. The following

characters are NOT allowed: < > () [] \ / ' "

• email - User's email address to be used on Community

• settingString - name/value pairs for user profile fields. (optional)

• reqUserAgent - [HttpServletRequest.getHeader(“User-Agent”)] used

for security identification information

• reqReferer - [HttpServletRequest.getHeader(“Referer”)] used for

security identification information

• reqRemoteAddr - [HttpServletRequest.getRemoteAddr()] used for

security identification information

Throws: SSOException if initial settings are invalid.

public System.String getLithiumCookieValue(

 System.String uniqueId,

 System.String login,

 System.String email,

 System.String settingString,

 System.String reqUserAgent,

 System.String reqReferer,

 System.String reqRemoteAddr) throws SSOException

See Also: init(String newkeyPath, String newClientId, String

newClientDomain)

getLithiumCookieValue (uniqueId, login, email, settingString, request)

Returns an encrypted String to be used for an authentication token.

The init() method must be called before this method is accessed.

Page 39 of 49

Parameters:

• uniqueId - unique identified used on the client User system

• login - User's login display name to be used on Community. The following

characters are NOT allowed: < > () [] \ / ' "

• email - User's email address to be used on Community

• settingString - name/value pairs for user profile fields. (optional)

• request - HttpServletRequest used for security identification information

Throws: SSOException if initial settings are invalid.

public static System.String getLithiumCookieValue(

 System.String uniqueId,

 System.String login,

 System.String email,

 System.String settingString,

 System.Web.HttpRequest request) throws SSOException

See Also: init(String newkeyPath, String newClientId, String

newClientDomain)

getLithiumCookieValue (uniqueId, login, email, settings, request)

Returns an encrypted String to be used for an authentication token.

The init() method must be called before this method is accessed.

Parameters:

• uniqueId - unique identified used on the client User system

• login - User's login display name to be used on Community. The following

characters are NOT allowed: < > () [] \ / ' "

• email - User's email address to be used on Community

• settings - name/value pairs for user profile fields. (optional)

• request - HttpRequest used for security identification information

Throws: SSOException - if initial settings are invalid.

Page 40 of 49

public static System.String getLithiumCookieValue(

 System.String uniqueId,

 System.String login,

 System.String email,

 System.Collections.Hashtable,

 System.Web.HttpRequest request) throws SSOException

See Also: init(String newKeyPath, String newClientId, String

newClientDomain)

getLithiumCookie (uniqueId, login, email, request)

Returns an HttpCookie containing an encrypted authentication token that can be

passed to the client (usually via HttpResponse) for seamless login and registration on

the Community servers. The init() method must be called before this method is

accessed.

Parameters:

• uniqueId - unique identified used on the client User system

• login - User's login display name to be used on Community. The following

characters are NOT allowed: < > () [] \ / ' "

• email - User's email address to be used on Community

• request - HttpRequest used for security identification information

Throws: SSOException - if initial settings are invalid.

public static System.Web.HttpCookie getLithiumCookie(

 System.String

 System.uniqueId,

 System.String login,

 System.String email,

 System.Web.HttpRequest request)

writeLithiumCookie (uniqueId, login, email, settings, request, response)

Writes an encrypted authentication token cookie directly to the client via the

HttpResponse object for seamless login and registration on the Community servers.

The init() method must be called before this method is accessed.

Page 41 of 49

Parameters:

• uniqueId - unique identified used on the client User system

• login - User's login display name to be used on Community. The following

characters are NOT allowed: < > () [] \ / ' "

• email - User's email address to be used on Community

• settings - name/value pairs for user profile fields.

• request - HttpRequest used for security identification information

• response – HttpResponse used to write the SSO cookie

Returns: true if the token was written successfully

Throws: SSOException if initial settings are invalid.

public static Boolean writeLithiumCookie(

 System.String uniqueId,

 System.String login,

 System.String email,

 System.Collections.Hashtable,

 System.Web.HttpRequest request,

 System.Web.HttpResponse response)

See Also: init(String newKeyPath, String newClientId, String

newClientDomain)

writeLithiumCookie (uniqueId, login, email, request, response)

Writes an encrypted authentication token cookie directly to the client via the

HttpResponse object for seamless login and registration on the Community servers.

The init() method must be called before this method is accessed.

Parameters:

• uniqueId - unique identified used on the client User system

• login - User's login display name to be used on Community. The following

characters are NOT allowed: < > () [] \ / ' "

• email - User's email address to be used on Community

Page 42 of 49

• request - HttpRequest used for security identification information

• response – HttpResponse used to write the SSO cookie

Returns: true if the token was written successfully

Throws: SSOException if initial settings are invalid.

public static Boolean writeLithiumCookie(

 System.String uniqueId,

 System.String login,

 System.String email,

 System.Web.HttpRequest request,

 System.Web.HttpResponse response)

See Also: init(String newKeyPath, String newClientId, String

newClientDomain)

removeLithiumCookie (request, response)

Removes the LithiumSSO cookie from the user's cookie cache. Call this method when a

user logs out from the client system.

Parameters:

• request - HttpRequest used for security identification information

• response – HttpResponse used to remove the SSO cookie with

public static void removeLithiumCookie(

 System.Web.HttpRequest request,

 System.Web.HttpResponse response)

PHP reference

This section is a PHP reference of summary and detailed code information.

Class summary

Lithium_SSO

Page 43 of 49

Constants

This section contains constants information.

Constants summary

$lithium_separator

= “|”

The character used as a separator

$lithium_version

= “LiSSOv1.5”

The current version of the LithiumSSO

$lithium_cookie_name

= “lithiumSSO:”

The name of the LithiumSSO cookie

Variables

This section contains variables information.

Variables summary

$client_id

The client or community ID to create an SSO token for.

This is typically the same as community ID unless you have multiple communities. In

that case, this is a value that you and Khoros decide on.

$client_domain

The domain name for this token, used when transporting via cookies.

$sso_key

The 128-bit or 256-bit secret key, represented in hexadecimal

$pg_key

The client’s secret PrivacyGuard key (128-bit or 256-bit)

Note: PrivacyGuard is a separate Khoros product that enables Community to send

email messages to community members without actually knowing what the user’s email

Page 44 of 49

Variables summary

address is. Contact your Customer Success Manager (CSM) for more information about

PrivacyGuard.

Functions

This section contains functions information.

Functions summary

lithium_sso

Initializes the LithiumSSOClient.

get_auth_token

Returns a Khoros authentication token for the given user parameters.

Get_auth_token_value

Returns a Khoros authentication token for the given user parameters.

encode

Returns an encrypted representation of the specified string.

get_random_iv

Returns a random initialization vector for AES with the specified length. The returned

string is URL-safe.

get_token_safe_string

Returns a token-safe representation of the specified string. Used to ensure that the

token separator is not used inside a token.

init_smr

Initializes the PrivacyGuard key, if PrivacyGuard is used.

Note: PrivacyGuard is a separate Khoros product that enables Community to send

email messages to community members without actually knowing what the user’s email

address is. Contact your Customer Success Manager (CSM) for more information about

PrivacyGuard.

get_smr_field

Returns the encrypted PrivacyGuard token.

Page 45 of 49

Functions summary

get_server_var

Returns the $_SERVER variable by the specified name.

Functions detail

lithium_sso

lithium_sso($client_id, $client_domain, $sso_hex_key)

Initializes the LithiumSSOClient.

Parameters:

$client_id – The client or community ID for which to create an SSO token. Your client ID

is assigned by Khoros and uniquely identifies your company or your community. If you

have only one community, the client ID is likely to be an abbreviated form of your

company name. If you have multiple communities, each community must have a unique

ID. In that case, you and Khoros decide on the IDs for each community.

$client_domain – The domain name for this token, used when transporting via cookies

$sso_hex_key – The 128-bit or 256-bit secret key, represented in hexadecimal

get_auth_token

get_auth_token($unique_id, $login, $email, $settings_array)

Returns a Khoros authentication token for the given user parameters.

Parameters:

$unique_id - A non-changable ID used to uniquely identify this user globally. This

should be an non-reusable integer or other identifier. E-mail addresses can be used, but

are not recommended as this value cannot be changed.

$login – The login name or screen name for this user. This is usually a publicly visible

field, so should not contain personally identifiable information. This name appears on

all messages the user posts in the community.

$email – The e-mail address for this user.

Page 46 of 49

Functions detail

$settings_array - An associative array of profile settings => value pairs.

Examples of settings include:

roles.grant = Moderator (grants the Moderator role to user)

profile.name_first = John (sets first name to John)

get_auth_token_value

get_auth_token($unique_id, $login, $email, $settings_array,

$req_user_agent, $req_referer, $req_remote_addr)

Returns a Khoros authentication token for the given user parameters.

Parameters:

$unique_id A non-changable ID used to uniquely identify this user globally. This should

be an non-reusable integer or other identifier. E-mail addresses can be used, but are

not recommended as this value cannot be changed.

$login – The login name or screen name for this user. This is usually a publicly visible

field, so should not contain personally identifiable information. This name appears on

all messages the user posts in the community.

$email – The e-mail address for this user.

$settings_array An associative array of profile settings => value pairs.

Examples of settings include:

roles.grant = Moderator (grants the Moderator role to user)

profile.name_first = John (sets first name to John)

$req_user_agent = The user agent of the browser making the request. Used for

security identification information.

$req_referer = The "referer" HTTP Header of the current request. Used for security

identification information.

$req_remote_addr = The remote IP Address of the current request. Used for security

identification information, specifically to determine that the IP Address in the sso token

matches the IP Address of the request (to prevent spoofing of the SSO token).

Page 47 of 49

Functions detail

encode

encode($string, $key)

Returns an encrypted representation of the specified string.

Parameters:

$string – The string to encode

$string – The key to use

get_random_iv

get_random_iv($length)

Returns a random initialization vector for AES with the specified length. The returned

string is URL-safe.

Parameters:

$length – The length of the IV to return, in bytes

get_token_safe_string

get_token_safe_string($string)

Returns a token-safe representation of the specified string. Used to ensure that the

token separator is not used inside a token.

Parameters:

$string – The string for which a token-safe representation is being returned

init_smr

init_smr($pg_hex_key)

Initializes the PrivacyGuard key.

Note: PrivacyGuard is a separate Khoros product that enables Community to send

email messages to community members without actually knowing what the

user’s email address is. Contact your Customer Success Manager (CSM) for more

information about PrivacyGuard.

Page 48 of 49

Functions detail

Parameters:

$pg_hex_key – The 128-bit or 256-bit PrivacyGuard key, represented in hexadecimal

get_smr_field

get_smr_field($string)

Returns the encrypted PrivacyGuard token.

Parameters:

$string – The string for which a PrivacyGuard encrypted token is being returned

get_server_var

get_server_var($name)

Returns the $_SERVER variable by the specified name.

Parameters:

The initialization optionally takes a server ID. When the SSO API issues cookies, it also

issues a one-time-use ID to prevent cookies from being reused. This ID is specific to the

instance of the SSO API. By default, this is the IP address of the system the API is on. If

there are multiple SSO API instances (e.g. multiple JVMs running on a single computer),

a more specific ID is needed (e.g. IP and port). The server ID can be any string that is

unique to each SSO API instance. It is important that this value maintain its uniqueness

for the life of the SSO API instance. If you choose a value other than internal IP:port,

Khoros strongly recommends that you maintain a mapping of server ID to the SSO API

that generated it. A mapping of server ID to SSO API instance aid in troubleshooting of

SSO authentication errors.

$name – The name of the $_SERVER variable to return

LithiumSSO FAQ

What type of encryption does the LithiumSSO client use?

The LithiumSSO client uses 256-bit Advanced Encryption Standard (AES) cryptography.

Page 49 of 49

Should we use a different clientID for stage vs. production?

Yes. Community uses the clientId in the cookie name it creates (and tries to delete it after

processing the SSO token), so if you use different client IDs for stage and production, the correct

SSO cookies are deleted right after they are processed and thus won’t be read again when

processing SSO cookies. We recommend using this client format: <community>.<phase>. For

example, Khoros’s stage clientId would be khoros.stage and its production clientID

would be lithium.prod.

For reference, by clientID, we are referring to one of the values you pass in when you create

the SSO client instance – in Java it's the second parameter passed into this call:

LithiumSSOClient.getInstance(key, clientId, clientDomain, serverId);

We have several instances on our production environment. Is it okay to set the same

server ID for all instances or should server IDs be unique?

You should always use unique server IDs for each instance of the SSO client that you create.

Otherwise, there could be clashes between tokens generated by each instance. We do have

code in the Java to prevent this from happening with multiple instances using the same server

ID, but you should use a different server ID for each instance. Additionally, it helps you identify if

a particular SSO client instance is configured wrong from the SSO token.

	LithiumSSO overview
	LithiumSSO authentication process

	Client integration
	Encryption library requirements
	Java requirements
	.NET requirements
	PHP requirements

	URLs required
	Configuring domains for testing
	Understanding session IP locking

	Deploying the LithiumSSO Client
	Deployment sample code
	Sample 1: LithiumSSO creates a cookie and writes it to the client browser
	Java code
	.NET code
	PHP code

	Sample 2: Pass the required parameters and write the cookie
	Java code
	NET code
	PHP code

	Sample 3: Pass optional parameters using a hashmap (Java, .NET) or an array (PHP)
	Java code
	NET code
	PHP code

	Sample 4: Set the cookie as non-secure to set up SSO if registration to your site is under HTTPS (an SSL environment)
	Java code
	.NET code
	PHP code

	Sample 5: LithiumSSO creates the cookie, and the client manually sets the cookie
	Java code
	.NET code
	PHP code
	Same as Sample 1 – PHP Code

	Sample 6: Initialize LithiumSSOCookie: Hex String instead of a key file
	Java code
	.NET code
	PHP code

	Sample 7: Include the “referer” parameter in URL
	Java code
	.NET code
	PHP code

	Sample 8: Set up sign-out when the user completes a session
	Java code
	.NET code
	PHP code

	About Lithium fallback communication
	Configuring SSO
	About Bounce SSO
	About Single log out

	Javadoc and .NET API reference
	Class LithiumSSOClient overview
	Java reference
	Fields
	Constructors
	Methods
	.NET reference
	Fields
	Constructors
	Methods

	PHP reference
	Class summary
	Constants
	Variables
	Functions

	LithiumSSO FAQ

