Khorosv%

19.5

Single Sign-On (SSO) Solution
Java, .NET, and PHP

Table of Contents

LITHIUMSSO OVERVIEW.......cccccceeeeesnneecensnnsaccecsansecenssnssscassnnsssesssansssesssnssssssssnsssssssanssssssssnsssssssanss 4
LITHIUMSSO AUTHENTICATION PROCESSccceeeeeeeesesessnes 4
CLIENT INTEGRATIONcccccceeieeecnnracancansaoansnnssacsscnnsassssnsssssssansssssssasssssssssssssssssnssssssssssssssssansassssss 6
ENCRYPTION LIBRARY REQUIREMENTS........corerceeeeeeeecccrssnssnsseeeecessssssasssssssasasnne 6
JAVA REQUIREMENTScoovuitteieetitctesaetessetesasaessaessse s saesesae s s st es st esastes st ebassebasaesasse s sae s saesesassesassesastesassesessesensesensesnans 6
INET REQUIREMENTS w..ocvveitieiteieeaeteeetesassee st ss s s st b s s e s sas s s s s sasaesassesssae s s s s aesesassebassesasseb st esasaesssaesasassasessesansnas 7
PHP REQUIREMENTSouviectiertessstesssesesae s s s sss s sasaesas s sas s s s s s ae s ass s assessssebassebassebas s s st s s sessssesasasbsastesassesanaesensns 7
URLS REQUIRED ...ccccceerneeeccscnnsecssssnssscsssonssscssssnssssssssssssssssssssssssnnsssssssnsssssssnnns 7
CONFIGURING DOMAINS FOR TESTING ...ccceeeeeeeeeeeeeeeeeeaeaeeaeeeseeseeseesssessesssssssasssee 7
UNDERSTANDING SESSION IP LOCKINGccceeeerreeeecerseeeeeesssneeeecssansesesssnnsasesssnsanes 8
DEPLOYING THE LITHIUMSSO CLIENT 8
DEPLOYMENT SAMPLE CODEcccccceeeeeuneeeeeccnaaecensnnseecassnnaacecsnnsascanns 12
SAMPLE 1: LITHIUMSSO CREATES A COOKIE AND WRITES IT TO THE CLIENT BROWSER 12
JAVA CODE ..ottt sttt ettt sttt s bt s bbb s et e st s st e bbb s e e bbb s e s s et e st se s et e bbb sses b e b s snensebessnsnsesesnsens 12
ANET CODE.... ettt ettt sttt s st b b s bbb s s e s b bse s s s b e s s s sss e s et e s s sesessssassesessssssnsesans 12
PHP CODE ...ttt ettt ettt ettt ettt bbbt ettt bbb eb et e b e b et e b et esebebebebebesebesebesebesesebesebesesesesas 13
SAMPLE 2: PASS THE REQUIRED PARAMETERS AND WRITE THE COOKIE 14
JAVA CODE ...ttt sttt et a e bt bt b st b ae b b e b b et b as b b assebas s e b st e s e e b st b s ae s s tebntebenantanans 14
INET CODE. ...ttt sttt a bbbttt et b st b bbb e b e b s e b b e s b et b as b e b et e bt s s s sanaens 14
PHP CODE ...ttt ettt sttt bbbt st b s s bbb s s a s s s s e et e b bs s e s s et e s sansnsesessssssesesnsnsnens 14
SAMPLE 3: PASS OPTIONAL PARAMETERS USING A HASHMAP (JAVA, .NET) OR AN ARRAY (PHP)........ 15
JAVA CODE ..ottt sttt ettt s e a e b s s s s st ae s bt b st e b asteban s e b st e b s s e s sae b s s e s s ass s setenaetenantsans 15
INET CODE ...ttt ettt bbbt b st b st bt b st st e b s se s s ae s s as s s astebasteb st e b s s e b st esansesenaeen 15
PHP CODE ..ottt ettt bbbttt b st bt st b s ae b b et b e s bt b e s e bt e s s sanaens 15
SAMPLE 4: SET THE COOKIE AS NON-SECURE TO SET UP SSO IF REGISTRATION TO YOUR SITE IS UNDER

HTTPS (AN SSL ENVIRONMENT)ccceeeeeeeneneeencsescssssssssssssssssssssssssssssssnsssnns 16
JAVA CODE ...ttt ettt ettt ettt ettt as e b et ess st e s e b esese s e b eseseas b et aseasebebesass s s ebaseasebesaseasasesesesnssesetesnanas 16
INET CODE ...ttt sttt bttt e b et bt e b st b s s s s et s st s ae s sastes et sasaesansesas 16
PHP CODE ...ttt sttt bttt bt b sttt s et s et s ae s b st b e s b st e b s s e bt e s s s santeen 16

Khoros % Page 1 of 49

SAMPLE 5: LITHIUMSSO CREATES THE COOKIE, AND THE CLIENT MANUALLY SETS THE COOKIE 16

JAVA CODE ...ttt ettt ettt ettt et ettt ettt et te s s eete b et et et e betetebesetssstetebetetessestetetebessantetetetessestetetetesetetetetens 16
INET CODE ..ttt a ettt e b et b as s e b st b st st s s et s ae s s as s s et sassesanssas 17
PHP CODE ...ttt sttt sttt bt a bt b e b st s s et b et b et b st e b aeb st e s s s sanaens 17
SAME AS SAMPLE T = PHP CODE ..ottt s sttt ettt a s s s 17
SAMPLE 6: INITIALIZE LITHIUMSSOCOOKIE: HEX STRING INSTEAD OF A KEY FILE 17
JAVA CODE ...ttt ettt sttt sttt s st s s s et et et s s s et b s s s b e s s s e s e s e b s sbse s e s e bbb asse s e s sssassssesnsnsesesssnns 17
INET CODE. .ottt a s a s e bbb e a e e s e e s s asasasasas s e sababas s s asasasasasasasasasane 17
PHP CODE ...ttt ettt ettt ettt bttt st s et s as b s et b st e b st e b s s e b st e s s s sanaeen 17
SAMPLE 7: INCLUDE THE “REFERER” PARAMETER IN URLcccecueueeerecccnnann. 18
JAVA CODE ...ttt ettt ettt b b s bbb et b et s et b s e s et e b a e s e e bbb s s et et b asee bbb s s anseb s sansetessanns 18
ANET CODE. ...ttt sttt ettt s e b b s se bbb st b s s e bbb s s se s e st e s et et e s ssssnsebesssansnsesans 18
PHP CODE ...ttt bbbt b s s b b s e s e st s st b e s s e s se b s sasansesessnsssesesssssanans 18
SAMPLE 8: SET UP SIGN-OUT WHEN THE USER COMPLETES A SESSIONcccceeeeeeeeeeeeeeneneacacseaeasasasaesaaaaes 19
JAVA CODE ...ttt ettt b ettt a e b a bt b et ae s b et bt ebas s bassebasteb st e s s e e b s s b s aes s sebensebenantnas 19
INET CODE ..ottt ettt st b bbb et bt e bt b st b e b st s s e e s s e b s e s s as s b e s nas 19
PHP CODE ...ttt sttt ts s bbb s st et b s e e s e b b s bt e b b a e s e et e b sasessesessnsssesessssnanens 19
ABOUT LITHIUM FALLBACK COMMUNICATIONcccccccveeeeennneccccnnes 19
CONFIGURING SSO0ccceeeeeceuneaceccnsaooessansscssssnssssssssasssssssassssssssasssssssssssssssssassssssssassssssssasssssssassssss 20
ABOUT BOUNCE SSO ...ttt vttt ettt ettt ettt bbbttt bt bbb sseststesebessassetetetesssstetesesesnsnsnsetens 21
ABOUT SINGLE LOG OUT oottt etesaeaes sttt sttt ae s st b s s sae s st sas s sassesassebsssessssebansesssssnsesessssenansasans 21
JAVADOC AND .NET API REFERENCE........ccccccceeeeeenneecensnneeccasnnsaacccsnnssecnssnnneee 22
CLASS LITHIUMSSOCLIENT OVERVIEWccceeeeeeneenencceceesannnsssssccassssssnsssssssssssssnnns 22
JAVA REFERENCEcccceeeeeeeeeeeeeeeeeeeeeeeeenemesesssssessssssssssssssssssssesssnsesssnsssssnsnssssnnnnns 25
FIELDS....ceeuteeeeiiiiennnsnnsnnensssseessssssssossasssssessssssssssassssssssss 25
CONSTRUCTORS ...eeeeeeeeersneeeeessaseeecssansesesssssssesssssssesesssnssesssssnsssessssnsesssssnsssssssnnns 25
IMIETHODScuueeeeeeecceeeeeccsnnneeecsssssseecsssssesessssnsesesssnsssessssssssessssnsssssssnnsenes 27
NET REFERENCE......cccceeesrrrrsrneeeeeeeessssssssssasssescsssssssssssasassssssssssssssssssssssssssnssnnnns 34
FIELDS...ccceveeeeeeereeesesesesesssess 34
CONSTRUCTORS ...cceerieccsssccnssassssascssssssessensasssennass 34
IMIETHODSciiiiiiinnnnnennnsiecccssssssnsosssssassssssssssssasssssssssssssssssasssssssssssssssnsss 36

Khoros % Page 2 of 49

PHP REFERENCE

42

CLASS SUMMARY 42
CONSTANTS ceeeeeeeeeeeeeeeeecerssssecesssssscasssssssassssssesssssssssssssssssssssssssssssssasssssssases 43
WARIABLESceeeeeeeereeeeecereseencessssssessssssssasssssssssssssssssssssssssssessssssssssssssssssssns 43
FUNGTIONS eueeeeeereeneecereeeeecereesesccsesssssesssssssssessessssssssssssssssssssasssssssssssssssanses 44
LITHIUMSSO FAQ 48

Khoros % Page 3 of 49

LithiumSSO overview

The Lithium Single Sign-on Solution (LithiumSSO) enables any client user system to integrate its
sign-in and registration system with Khoros Community. LithiumSSO creates a seamless sign-in
for the end user and enables you to:

e Create a new user account on Community

e Sign a user into Community

e Change a user’s personal profile parameters

e Change a user's Community permission levels by assigning or removing a role

Users sign in as usual through the main client site. After signing in, they are forwarded to your
Community site and are automatically signed in or registered on Community.

LithiumSSO works with the client system to authenticate users before signing them into
Community. When an SSO solution is in place, users who sign into the client system can move
freely between the client system and your community without having to sign in again.

LithiumSSO uses encrypted/encoded HTTP cookies to communicate between user systems. The
cookie is encrypted with strong 256-bit Advanced Encryption Standard (AES) cryptography.
Secondary “fallback” methods are available in case the user's browser fails to support persistent
cookies. Although the user experience is seamless, no direct connection is ever established
between the client system and user systems.

e The .Net SSO Client was developed and tested on .Net version 1 and updated for .Net
version 2. Although not tested on .Net Versions 3 or 3.5, it should work on these
versions, too.

e The Java SSO Client is supported up to JDK 1.8+, but versions can be provided as far
back as 1.5.

e The PHP SSO Client has been internally tested up to version 7.2, but should work on the
most current version.

Note: For security reasons, Khoros recommends that you do not modify our SSO client software
to enable unsupported features or versions. If you need to modify our SSO client, we
recommend opening a Support ticket to investigate the possibility.

LithiumSSO authentication process

This section describes what happens behind the scenes with new or existing users signing in to
your system and then automatically into Community.

Khoros % Page 4 of 49

— =
8iei logs in here__ _.and arrives li%
| |

Client _.Meanwhile, behind the scenes... Lithium
Site . . . , Site
1 > 2 o 3 B 4 o
Client System LithtumSS0 methods Client System Lithium System
calls LithiumSSO encrypt and encode forwards user decrypts and decodes
methods user ID information and token to token, and uses itto
and write a token Lithium System log user

1. When the user signs in, the client system calls the LithiumSSO library method, which
writes a token based on information in the client system'’s user profile. (Khoros provides
a secret key that encrypts the plain text user profile fields and encodes the information
before writing it as a cookie to the user’s browser. This unique, encrypted and encoded
token identifies the user.)

Note: Make sure that the client system does not drop the LithiumSSO cookie until the
user visits the community. Dropping the SSO cookie sooner could create problems if the
user doesn't visit the community until after the SSO cookie timestamp expires, since the
cookie isn't processed until the user hits the community.

2. The client system receives the authentication token and writes it to the user’'s browser.
The authentication token contains the user’s unique ID, login name, and email address
on the client system. The token can also contain the user’s profile and role information.

3. The client’s system forwards the user to Community.

Khoros picks up the user’s authentication token and decrypts and decodes its contents
using a secret key that matches the client's. It then processes the clear-text contents of
the token, checking to see if the unique user ID passed exists in the system and then
does one of the following:

e [f the user exists in Community, it checks for updates to the user’s information, makes any
necessary changes in the user's Community profile, and signs the user in.

e If the user is new to Community, it creates a new user account based on information
passed in the SSO token and sets the user’s access level based on the user’'s permissions
and roles. If no roles are provided, the user receives the default permissions when they
are signed in.

Note: The user is signed in only if the token is valid. If the user is visiting anonymously
on the client system and visits a page that requires sign in, the Community sends the
user back to the client's registration system with a query string parameter that tells the
client’s registration system where to send the user in Community after the user finishes
signing in.

Khoros % Page 5 of 49

For example, if an anonymous user tries to post a message, the user is sent to the client’s
registration system with a query string parameter that contains the URL of the post page.
This enables the user to finish posting the message as intended. The name of the query
string parameter — "referer” by default - is configurable.

After the SSO process is complete and the user is signed in, users can change their login, email,
or other profile settings on the client system.

Client integration

To integrate with LithiumSSO, the client system must:
e Be able to create LithiumSSO tokens from its user system
e Have the LithiumSSO libraries installed
e Have a client-specific encryption key installed

Khoros issues the LithiumSSO libraries and a unique encryption key for each deployment.

Note: (NET only) The LithiumSSO release assembly is signed with a strong name, which
guarantees the uniqueness of a .NET assembly. (Assemblies are the building blocks of
.NET applications.) With strong naming, different versions of an assembly can exist side-
by-side and be loaded into the Global Assembly Cache (GAC). Strong names also ensure
that newer versions of an assembly come from the same publisher. For example,
LithiumSSO can come only from Khoros because we have the private key used to sign

the assembly.

Encryption library requirements

Environment setup is unique to your platform. This section lists the requirements for Java, .NET,
and PHP.

Java requirements
You must download and install the following Java Archive (JAR) files:
e Dbcprov-jdkxx-xxx.jar and bcmail-jdkxx-xxx.jar files - Cryptography APls
available from http://www.bouncycastle.org/latest releases.html. Be sure
to download the correct file for your version of Java.

Khoros % Page 6 of 49

e servlet-api.jar - available as part of the J2EE SDK from
http://java.sun.com/products/servlet/download.html. Be sure to
download the correct file for your version of Java.

® Guava-jdkxxx-xxx.jar — Google's guava library: https://code.google.com/p/guava-
libraries. Be sure to download the correct file for your version of Java.

If you are running JDK 1.3 or earlier, you must also download and install the following JAR files:
e Jjcel 2 1.jar -Java Cryptography Extension (JCE) from Sun
e sunjce provider.jar - Sun's JCE Provider Implementation
e local policy.jar/US export policy.jar - JAR containing policy files required
by JCE.

Note: These JAR files are included in Sun’s JCE Implementation JAR, which is part of JDK 1.4+. If
you already have JCE installed, no further action is required.

.NET requirements

Your .NET environment must include:
e BouncyCastle.Crypto.dll
e ICSharpCode.SharpZipLib.dll

PHP requirements
Your PHP environment must include:
e z1lib.so - compression function extension. Download it here.

URLs required

To direct users to specific registration and sign in pages, you must provide Khoros with the
URLs. Additionally, to send users to a specific page when they sign out of the community,
provide that URL as well.

You can set the sign-in, registration, and sign-out URLs in Community Admin > System > SSO.

Configuring domains for testing

Cookie-based SSO requires that both your company server and the Community server be in the
same domain. This is not an issue in the normal production environment. However, during
testing your Community staging server is located in the lithium.com domain, not in your
domain. As a result, you must choose a name for the Community staging server in your own

Khoros % Page 7 of 49

https://www.php.net/manual/en/zlib.installation.php

domain and create an alias (CNAME record) on your DNS server that points that local name to
the Community staging server inside the lithium.com domain. You must also provide Khoros
with the name you have selected so that we can configure the appropriate access.

For example, if the Community staging server is:
http://yourcompany.stage.lithium.com

You might choose this as your staging name:
http://yourcompanystage.yourcompany.com

Then you must create a DNS alias that points from your local name:
(http://lithiumstage.yourcompany.com) to the Community staging server
(http://yourcompany.stage.lithium.com).

Note: After you have set up the DNS alias, you must use that alias for SSO to function correctly.

Understanding session IP locking

To prevent malicious third parties from hijacking a user’s SSO session, Community locks the
session ID to the client IP address. If the client IP address does not match the IP address set in
the SSO token, Community prevents the user from signing in.

If your network environment changes the client IP address between the client machine and the
SSO server, SSO might not work. For example, SSO might fail under the following circumstances:
e The SSO server is located behind a proxy server. In this case, the proxy server changes
the client IP address before contacting the SSO server. The SSO server writes the IP
address provided by the proxy server in the session cookie before redirecting the client
to the community. In this case, the client connects to the community using its true IP
address, but has a cookie with a different IP addresses recorded.
¢ The client IP address changed mid-session. For example, this might happen if there
are network changes for the client’s ISP.

If you have a network environment that might change the client IP address, contact Support
before implementing SSO.

Deploying the LithiumSSO Client

To deploy the LithiumSSO client:

Khoros % Page 8 of 49

—_

Deploy the LithiumSSO library containing the LithiumSSO encryption libraries to the

application server where the user system runs.

w N

Place the encryption key on the user system server.
Instantiate the SSO client library (examples are from the “Deployment Sample Code”

Sample 1 section below):

e Java: The call to LithiumSSOClient.getInstance in Sample 1 —Java Code
e .NET: The call to SsoClient.init in Sample 1 - .Net Code
e PHP:The call to new lithium sso in Sample 1 - PHP Code

4. Pass the following parameters to the LithiumSSOClient.

Parameter Description

uniquelD

Identifies the user in both your system and Community. Community
uses this ID to identify new and returning users.

Note: The uniquelD is case-sensitive. For example, Community sees
Wassup Doc and wassup_ doc as two different IDs.

Login (display
name)

Sets the name that appears on the messages the user posts in the
community. In effect, this is the user's community identity. The sign-in
name:

Must be unique in Community.

Cannot exceed 15 alphanumeric characters, (including hyphens and
underscores).

Note: You can ask Professional Services to expand the 15-character
limit. However, longer login names might not display properly in some
areas.

Cannot be an email address or any other personally identifiable
information, such as a social security number.

Note: Display names are not case sensitive.

If the existing user names in your system do not conform to these rules,
you must add a Screen Name selection page to the registration process
that against the same naming rules. Typically, you would include
acceptance of its Terms and Conditions on the same page.

email

Sets the email address Community uses to communicate with the user.

See Sample 2 for sample code that passes the required parameters and writes the

cookie.

5. (Optional) Pass the following information via the authentication token:

Khoros {

Page 9 of 49

e User profile information, such as first name, last name, and location. See Sample

3 for sample code that passes optional parameters using a hashmap.

e The user's role, which specifies the permissions the user has after registering and

logging in to Community. This enables your system to control access to specific

forums or features.

In the SSO token, you can include any profile field. The most commonly used profile

fields include:

Field Description

profile.biography

The user’s profile biography

profile.birthday

The user's birthday in UTC epoch time

profile.im_id_aim

The user's AIM ID

profile.im_id_icq

The user's ICQ ID

profile.im_id_msn

The user's MSN ID

profile.language

The default community site language to use for this
user.

profile.location

The user's location

profile.name_first

The user's first name

profile.name_last

The user’s last name

profile.remember_password

Indicates whether the community should set an auto-
login cookie to remember users when they return to
the community after the session has expired

profile.signature

The user’'s message signature

profile.url_homepage

The user's homepage URL

profile.url_icon

The URL for the user’s avatar

profile.url_icon_h

Height in pixels for the user's avatar

profile.url_icon_w

Width in pixels for the user’s avatar

roles.grant
roles.remove

Comma-delimited list of the roles to grant or
remove for a user

Note: To prevent confusion and having roles reset
each time the user authenticates via SSO, we
recommend you manage each role using either SSO
or Admin, but not both.

For example, you might choose to manage roles with
smaller groups of users (Administrator, Moderator,
and Superuser) via Community Admin and manage

Page 10 of 49

roles for larger populations (Employee, Partner, and
Customer) via SSO, which is much more manageable.

So, if you're passing an Employee role via SSO, don't
remove it via the Admin; instead, stop passing it in
roles.grant and start passing it roles.remove. If you
also remove it via the Admin, and the IDP is still
passing the role in roles.grant, they'll be granted the
role each time they sign in.

Based on the required and optional information, the LithiumSSOClient can:

e Return the value of the encryption string to be used in the cookie or as a parameter in the
fallback HTTP GET or POST request. See About Lithium fallback communication for more

information.
e Return a cookie “object” that you can use to write the cookie to the browser/user-agent.

e Write the cookie directly to the browser/user-agent if the request includes the
HttpServletResponse object. (Java only)

After the SSO token is created and written, your system can redirect users to any page on
Community. This redirection need not be forced; users can make their way to Community on
their own at any time after logging in to your system. We recommend redirecting users to the
URL provided as a query string parameter when the user is sent to the client system.

For example, if an anonymous user tries to post a message, the user is sent to the client’s
registration system with a query string parameter that contains the URL of the post page. This
enables the user to finish posting the message. The name of the query string parameter—
“referer” by default—is configurable. See Sample 7 for sample code that shows how to get the
“referer” parameter in the URL.

To sign a user out using an SSO token, write the SSO token using a unique login ID that
represents an anonymous user, as shown in Sample 8.

Khoros % Page 11 of 49

Deployment sample code

The following sections provide sample deployment code for Java, .NET, and PHP.
Note: When choosing which fields to include in the SSO token, be mindful of how long
the SSO cookie will get. The standard maximum allowed size for all cookies for a domain
is 4093 bytes. (This is the limit set by most modern browsers.) Some fields, such as the
referrer URL shown in Sample 7, can be quite long. As such, you might need to make
some adjustments to accommodate for all the information you want to include in the
SSO cookie.

Sample 1: LithiumSSO creates a cookie and writes it to the client browser

Java code
String keyPath = "C:\\usr\\local\\www\\web-
infA\\lithium\\companyx.key";

LithiumSSOClient ssoClient = LithiumSSOClient.getInstance (keyPath,
"companyx", ".companyx.com", "serverid");

// get Lithium cookie value from client values:
// uniqueld, login, email, settingString, request, response

String settingString =
"profile.name first=Lia|profile.name last=Thium";

ssoClient.writeLithiumCookie (uniqueId, login, email, settingString,
request, response);

.NET code

// init SSOClient class (to be called during server init, 1 time only)
String keyPath = "C:\\usr\\local\\www\\web-
inf\\lithium\\companyx.key";

SSOClient.init (keyPath, "companyx", ".companyx.com");

// get Lithium cookie value from client values:

// uniqueld, login, email, settingString, request, response

String settingString =

"profile.name first=Lial|profile.name last=Thium";
SSOClient.writeLithiumCookie (uniquelId, login, email, settingString,
request, response);

Khoros % Page 12 of 49

PHP code
// Hexidecimal string provided by Khoros (encryption key)
Skey = "9DIDD509A2E1529E73DC3026D455D391";

// Initialize the Khoros php library

require once("lithium sso.php");

$lithiumSSOClient = new lithium sso ("companyx", ".companyx.com",
Skey);

// Setup parameters

SuniqueId = "231412341"; // unique identifier for this user
$login = "testuser234"; // login name for this user
Semail = "testuser234@companyx.com"; // email address for this user

// (Optional) Additional user profile settings to pass to Lithium
Ssettings = array();

// Example: Set the user's homepage URL
S$settings["profile.url homepage"] = "http://www.customerhomepage.com";

// Example: Grant the user the Administrator role
Ssettings(["roles.grant"] = "Moderator";

// Generate the actual token
$ssoValue = $lithiumSSOClient->get auth token(SuniquelId, $login,
Semail, S$settings);

PHP5:
setrawcookie($lithiumSSOClient—>lithium_cookie_name . clientid,
Sssovalue, 0, '/', clientdomain);

PHP4:

header ("Set-Cookie: ".S$lithiumSSOClient-

>lithium cookie name.clientid, "=".$ssoValue.";Domain=".clientdomain.";
Path=/");

Khoroscg Page 13 of 49

Sample 2: Pass the required parameters and write the cookie
Java code

// unique 1id

String uniquelId = "167865";

// display name

String login = "janmon04";
// email
String email = "jane.monet@mycompany.com";

//write cookie

lithiumSSOClient.writeLithiumCookie (uniquelId, login, email,
settingsMap, request, response);

NET code
// unique id
String uniquelId = "167865";

// display name
String login = "janmon04";

// email
String email

"jane.monet@mycompany.com";

//write cookie
SSOClient.writeLithiumCookie (uniqueId, login, email, settingsMap, request,
response) ;

PHP code
// unique id
SuniqueId = "167865";

// display name

$login = "janmon04";
// email
Semail = "jane.monet@mycompany.com";

//write cookie

$ssoValue = $1lithiumSSOClient->get auth token (Suniqueld, $login, S$email,
$settings array);

header ("Content-Type: text/html; charset=utf-8");

header ("Set-Cookie: ".$lithiumSSOClient-

>lithium cookie name.S$clientId."=".$ssoValue."; Path=/;Domain=".Sdomain) ;

Khoros r% Page 14 of 49

Sample 3: Pass optional parameters using a hashmap (Java, .NET) or an array
(PHP)

Java code
Map<String, String> settingsMap = new HashMap<String, String>();

settingsMap.put ("profile.name first", "Jane");
settingsMap.put ("profile.name last", "Monet");
settingsMap.put ("profile.im id aim", "janem04");
//write cookie

lithiumSSOClient.writeLithiumCookie (uniquelId, login, email,
settingsMap, request, response);

//write cookie

lithiumSSOClient.writeLithiumCookie (uniquelId, login, email,
settingsMap, request, response);

NET code

Hashtable settingsMap = new Hashtable();
settingsMap.Add ("profile.name first", "Jane");
settingsMap.Add ("profile.name last", "Monet");
settingsMap.Add("profile.im id aim", "janem04");

//write cookie
SSOClient.writeLithiumCookie (uniqueId, login, email, settingsMap, request,
response) ;

PHP code

$settings array = new array();

$settings array["profile.name first"] = "Jane";
$settings array["profile.name last"] = "Monet";
$settings array["profile.im id aim"] = "janem04";

//write cookie
$ssoValue = $1lithiumSSOClient->get auth token (Suniqueld, $login, S$email,
$settings array);

header ("Content-Type: text/html; charset=utf-8");

header ("Set-Cookie: ".S$1lithiumSSOClient-
>lithium cookie name.S$clientId."=".$ssoValue."; Path=/;Domain=".$domain) ;

Khoroscg Page 15 of 49

Sample 4: Set the cookie as non-secure to set up SSO if registration to your site is
under HTTPS (an SSL environment)

Note: In the following examples, if the community URL you are sending the request to after
setting the SSO cookie to is HTTPS, then set "Secure: True", but if it is not HTTPS, set it to
"Secure: False".

Java code
Cookie ssoCookie = getLithiumCookie (uniqueld, login, email, settings,
request) ;

ssoCookie.setSecure(false);

response.addCookie (ssoCookie) ;

.NET code

HttpCookie cookie = SSOClient.getLithiumCookie (uniquelId, login, email,
request, settings);

ssoCookie.set Secure(false);

response.AppendCookie (ssoCookie) ;

PHP code

//simply don't set the Secure header parameter
$ssoValue = $lithiumSSOClient->get auth token (Suniqueld, $login, S$email,
$settings array);

header ("Content-Type: text/html; charset=utf-8");
header ("Set-Cookie: ".S$lithiumSSOClient-
>lithium cookie name.S$clientId."=".$ssoValue."; Path=/;Domain=".Sdomain);

Sample 5: LithiumSSO creates the cookie, and the client manually sets the cookie

Java code

String keyPath = "D:\\usr\\local\\www\\web-
infA\\lithium\\companyx.key";

LithiumSSOClient ssoClient =
LithiumSSOClient.getInstance (keyPath, "companyx", ".companyx.com",
"serverid") ;

// get Lithium cookie value from client values:
// uniqueld, login, email, settingString, request

String settingString =
"profile.name first=Lia|profile.name last=Thium";

Khoros % Page 16 of 49

Cookie ssoCookie =
ssoClient.getLithiumCookie (ssoClient.getLithiumCookieValue (uniqueld,
login, email, settingString, request));

response.addCookie (cookie);

.NET code

// init SSOClient class (to be called during server init, 1 time only)
String keyPath = "D:\\usr\\local\\www\\web-inf\\lithium\\companyx.key";
SSOClient.init (keyPath, "companyx", ".companyx.com");

// get Lithium cookie value from client values:

// uniqueld, login, email, settingString, request

String settingString = "profile.name first=Lia|profile.name last=Thium";
String lithiumSSOvalue = SSOClient.getLithiumCookieValue (uniqueld, login,
email, settingString, request);

HttpCookie cookie = new HttpCookie ("lithiumSSO:companyx", lithiumSSOvalue);
cookie.Path = "/";

cookie.Domain = ".companyx.com";

response.AppendCookie (cookie) ;

PHP code
Same as Sample 1 — PHP Code

Sample 6: Initialize LithiumSSOCookie: Hex String instead of a key file
Java code

String keyString = "04A7D2234230C506047F3BAF67B5DAC2";

Key ssoKey = new Key(keyString);

LithiumSSOClient.getInstance (ssoKey.getRaw(), "companyx",
".companyx.com", "serverid")

.NET code

byte[] ssoKeyData = KeyManager.convertHexString (ssoKey) ;
SSOClient.init (ssoKeyData, "companyx", ".companyx.com", “serverid”);
PHP code

Same as Sample 1 — PHP Code

Khoroscg Page 17 of 49

Sample 7: Include the “referer” parameter in URL

Java code

public void doGet (HttpServletRequest request, HttpServletResponse
response) throws ServletException, IOException {

String refererUrl = request.getParameter ("referer");

// do something, such as logging the user in or out using the
LithiumSSOClient

//
// send the user back to the page of the forums they came from
response.sendRedirect (refererUrl) ;

}
.NET code

private void Page Load(object sender, System.EventArgs e)

{

String refererUrl = Request.QueryString["referer"];

// do something, such as logging the user in or out using the
LithiumSSOClient
//

// send the user back to the page of the forums they came from
response.Redirect (refererUrl);

PHP code
<?php

if ($ POST != null) {
SrefererUrl = $ POST['referer'];

// do something, such as logging the user in or out using the

LithiumSSOClient
//

// send the user back to the page of the forums they came from
header ("Location: ".SrefererUrl);

?>

Khoroscg Page 18 of 49

Sample 8: Set up sign-out when the user completes a session

Java code
String uniquelId = LithiumSSOClient.ANONYMOUS UNIQUE ID;

ssoClient.writeLithiumCookie (uniquelId, login, email, settingString,
request, response);

See Javadoc reference for information on syntax.

.NET code
String uniqueId = SSOClient.ANONYMOUS UNIQUE ID;
SSOClient.writeLithiumCookie (uniqueId, login, email, request, response);

PHP code

SuniqueId = $1ithiumSSOClient->ANONYMOUS UNIQUE ID;

$ssoValue = $1lithiumSSOClient->get auth token ($uniqueld, $login, $email,
$settings) ;

PHP5:

setrawcookie ($1ithiumSSOClient->1lithium cookie name . clientid, $ssoValue, O,

'/', clientdomain) ;

PHPA4:

header ("Set-Cookie: ".$lithiumSSOClient-

>lithium cookie name.clientid,"=".S$ssoValue.";Domain=".clientdomain.";
Path=/");

About Lithium fallback communication

The LithiumSSO system supports a fallback method for communicating between the client
system and Community. In addition to the SSO cookie, you can pass the encrypted value
generated by the LithiumSSOClient class to Community through either an HTTP GET or POST
request.

You make the GET or POST request to the SSO sign-in page URL. For example:

http://myforum.mydomain.com/mycommunity/sso

Khoros % Page 19 of 49

Include the following parameters in your GET or POST request:

Parameter Name Sample Value

sso_value

~30asldivjha3093wjhafkefjaow3r934uefjo349aurdw03jhoas0aw349aj0f9

referer

http://forums.mydomain.com

You can change the name of the referer parameter as part of the configuration for your

community. If you do not specify a referer URL, the user is taken to the community front page.

Configuring SSO

To configure SSO settings for your community:

1. Go to Community Admin > System > SSO
2. Configure the SSO settings:

Setting Description

Turn on Lithium Single Enable or disable LithiumSSO.
Sign-On (SSO)

Bounce URL (Optional) URL to bounce the first request of a session to. Used

to determine the login state. Used in bounce SSO
scenarios only. Leave blank to disable bounce.

Allow SSO user Email Enable SSO users to change the email associated with
changes their account.

Language Parameter Name of the query string parameter to pass to the
Name host system.

Return Value Parameter | Name of the query string parameter to pass to the

Name host system.

Redirect Reason Name of the query string parameter to pass to the
Parameter Name host system.

URL to registration page | Direct users to this URL when they register.

URL to login page Direct users to this URL at sign-in.

URL to logoff page Direct users to this URL at sign-out.

Single Log Out (optional) | Enable logging users out of the community from the

client’s system.

Enable Auto Login for Enables auto login via fallback SSO if cookie-based
Fallback SSO

login fails.

Khoros %

Page 20 of 49

Auto generate SSO User | When login is enabled in SSO Complete Registration
Login form and this field is checked, the XML Text
Generator for SSO User login (which must also be
checked) generates a user login and populates the
login field in the SSO Complete Registration form.
Users can still change the pre-populated values. If
login is disabled in the SSO Complete Registration
form, this field has no effect.

XML text generator for When login is enabled in SSO Complete Registration
SSO user login form and the Auto generate SSO User Login field is
checked, the XML Text Generator for SSO User login
generates a user login and populates the login field
in the SSO Complete Registration form when this
field is checked. Users can still change the pre-
populated values. If login is disabled in the SSO

Complete Registration form, this field has no effect.

3. Click Save.

About Bounce SSO

Bounce SSO ensures that a user's community session is synced with the user’s session on the
client system. When user Community sessions times out, Bounce SSO redirects them to a client-
specified URL which the client can set up to redirect users back to the originating community
pages with the SSO token to sign them back in.

Bounce syncs your company website with Community. When enabled, users who are already
signed in on the customer side can be seamlessly signed into Community when they get to the
community via a link or bookmark.

Bounce hits the configured bounce URL once per session on the user’s first visit to the
community, if the user is not signed in. To support this, you need to implement a new page that
checks to see if the user is signed in (no Ul is required). If they are signed in, set an SSO cookie.
Then, in either case, redirect back to the referrer.

About Single log out

You use Single Log Out when Single Sign-On is enabled and a user signs out on your company
website. You can set an SSO cookie with the Community anonymous user ID (refer to Sample 8).
This ensures that the user is not signed in when they visit the community.

Khoros % Page 21 of 49

Javadoc and .NET API reference

This section provides the summary and detailed code information for Java and .NET.

Class LithiumSSOClient overview